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Abstract

The natural frequencies are obtained for elastic circular plates with mixed boundary conditions. The boundary

conditions of the plate were combinations of clamped, simply supported, free, and guided. The natural frequencies are

presented as a function of the angle over which the circumference of the plate is treated as one boundary and the remainder

as another boundary condition.

It was found that the axisymmetric modes exhibit continuous variation of the natural frequency from one pure condition

to the other pure boundary condition, while the asymmetric modes show two branches of varying curvature and magnitude

fluctuation, depending on the magnitude of the angles of mixed boundaries.

r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

In many cases, some of which may be accidental, the boundary conditions of an elastic plate are altered by
fracture along a part of its periphery into a different case, thus producing mixed boundary conditions. To
determine the influence of this new mixed boundary condition and how the magnitude of such a fracture alters
the natural frequencies of the circular plate, an approximate method has been developed to find the lower
natural frequencies.

The problem of bending of a circular plate with mixed boundaries has been treated previously for some
special conditions. A more general problem for a plate partly clamped and partly simply supported was
formulated in Ref. [1], which treats forced vibrations due to a harmonic load perpendicular to the plate, which
in addition is subjected to a compressive load. In later papers [2–4] a variational approach was applied to a
circular plate partially clamped and partially simply supported. One method is based upon two perturbations,
i.e. one when the plate is clamped all around, the other when the plate is simply supported. The first
perturbation yielded upper bounds for the eigenvalues, while the latter presented the lower bounds. There are,
however, still some discrepancies with previously published results, all of which are restricted only to the
mixed boundary conditions of a partly clamped and partly simply supported system.
ee front matter r 2005 Elsevier Ltd. All rights reserved.
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Nomenclature

a radius of circular plate
D Stiffness of plate (D ¼ Eh3=ð12ð1� n2ÞÞ)
E modulus of elasticity
h thickness of plate
I moment of inertia
Im modified Bessel function
Jm Bessel function
k distributed stiffness of translational

springs (force/unit length)
K distributed stiffness of spiral springs

(moment/unit length)

M bending moment, twisting moment
N1; N2 number of points, at which the boundary

conditions are satisfied
Q transverse shearing force
r; j polar coordinates
t time
V Kelvin–Kirchhoff edge reaction
wðr;j; tÞ displacement of plate
a angle
R mass density of plate
n Poisson’s ratio
l eigenvalue
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With the advent of very efficient high speed computers, allowing solution of a large number of algebraic
equations in a relatively short time, we have proposed another method for determining the eigenvalues under
various mixed boundary conditions [5], where not only the fundamental natural frequency is determined, but
also higher axi- and asymmetric mode shapes of the plate are investigated. In addition we have determined the
nodal lines of the asymmetric natural modes.

It should be mentioned that the method presented is not restricted to the determination of eigenfrequencies
of unloaded plates, but may also be applied to radially loaded plates. It also allows the investigation of the
response of the plate to harmonically oscillating loads perpendicular to the plate as well as the buckling of
circular plates with mixed boundaries. In addition, the method may also be used for rectangular plates with
mixed boundary conditions, requiring treatments in Cartesian coordinates.

In Ref. [5] we treated a plate, part of which was clamped, and the remainder of whose boundary was
considered to be simply supported. A new phenomenon was detected: for the asymmetric modes (angular
mode number ma0) two natural frequencies and two nodal lines exist. These appear only for mixed
boundaries and disappear as soon as the boundary of the plate is either totally clamped or totally simply
supported. If a is the magnitude of the angular region of one boundary condition and ð2p� aÞ that of the
remaining region of the other boundary condition, the natural frequencies exhibit for a ¼ 0 the natural
frequencies of the pure boundary condition, while a ¼ 2p yields those of the other completely pure boundary,
as is indicated in the numerical results in the following figures.

In the following we shall investigate the lower natural frequencies of a circular plate for which mixed
boundary conditions, such as clamped, simply supported, free or guided conditions are present.
2. Basic equations

The problem of finding the approximate lower natural frequencies of a circular plate exhibiting
partially mixed boundary conditions along its periphery may be solved with a semi-analytical method as
shown below. This method satisfying the various boundary conditions for a finite number of points at the
periphery r ¼ a may be applied to a large variety of boundary conditions. We shall treat here the boundary
conditions of clamped, simply supported, free, guided and elastically supported edges of various peripheral
edge ranges.

The basic equations require the solution of the equation of the circular plate

Dr4wþ Rh
q2w

qt2
¼ 0, (1)



ARTICLE IN PRESS
H.F. Bauer, W. Eidel / Journal of Sound and Vibration 292 (2006) 742–764744
where

r2 ¼
q2

qr2
þ

1

r

q
qr
þ

1

r2
q2

qj2

with the appropriate mixed boundary conditions. The bending and twisting moments are given by

Mr ¼ �D
q2w

qr2
þ n

1

r

qw

qr
þ

1

r2
q2w

qj2

� �� �
, (2)

Mj ¼ �D
1

r

qw

qr
þ n

q2w

qr2
þ

1

r2
q2w

qj2

� �
, (3)

Mrj ¼ �Dð1� nÞ
q
qr

1

r

qw

qj

� �
(4)

and the transverse shearing forces are

Qr ¼ �D
q
qr
ðr2wÞ, (5)

Qj ¼ �D
q

rqj
ðr2wÞ, (6)

while the Kelvin–Kirchhoff edge reactions are given by

V r ¼ Qr þ
1

r

qMrj

qj
, (7)

Vj ¼ Qj þ
qMrj

qr
. (8)

The displacement of the plate is wðr;j; tÞ; R is its density, h its thickness and D ¼ Eh3=ð12ð1� n2ÞÞ its bending
stiffness; n is Poisson’s ratio. The boundary conditions may be either

(a) clamped: w ¼ 0 and
qw

qr
¼ 0 at r ¼ a;

(b) simply supported: w ¼ 0 and Mr ¼ 0 at r ¼ a;

(c) free: Mr ¼ 0 and Vr ¼ 0 at r ¼ a;

(d) guided:
qw

qr
¼ 0 and V r ¼ 0 at r ¼ a;

(e) elastically supported: Mr � K
qw

qr
¼ 0 and V r þ kw ¼ 0 at r ¼ a;

(9)

where K is the distributed stiffness, i.e. moment/unit length, opposing the edge rotation, and where k is the
distributed stiffness, i.e. force/unit length, opposing the translational motion in direction w.

The solution of Eq. (1) yields with wðr;j; tÞ ¼W ðr;jÞeiot the expression

W ðr;jÞ ¼
X1
m¼0

AmJm l
r

a

� �
þ CmIm l

r

a

� �n o cosmj

sinmj

( )
, (10)

where l2 ¼ oa2
ffiffiffiffiffiffiffiffiffiffiffi
Rh=D

p
. The problem of finding the approximate lower natural frequencies for mixed edge

conditions depends on the range of the various boundary conditions at hand. The complexity of the numerical
procedure is reduced, if two of the four boundary conditions exhibit the same equation. This means that only a
set of two infinite equations have to be solved. This is observed for a combination of some of the following
boundary condition cases.

The mixed boundary conditions clamped–simply supported exhibit at r ¼ a the same boundary condition
w ¼ 0 at r ¼ a as does the case for a totally clamped plate and that for a totally simply supported plate. For a
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clamped–guided mixed boundary case the total range 0pjo2p shows qw=qr ¼ 0 at r ¼ a. For a combination
of simply supported and free boundaries, the total range 0pjo2p has to satisfy the vanishing bending
moment Mr ¼ 0 at r ¼ a, while for a combination of free and guided boundaries the Kelvin–Kirchhoff edge
reaction V r ¼ 0 at r ¼ a, i.e.

V r ¼ �D
q
qr
ðr2wÞ þ

ð1� nÞ
r

q2

qrqj
1

r

qw

qj

� �� �
¼ 0,

or

Vr ¼ �D
q3w
qr3
þ

1

r

q2w
qr2
�

1

r2
qw

qr
þ
ð2� nÞ

r2
q3w

qrqj2
�
ð3� nÞ

r3
q2w

qj2

� �
¼ 0. (11)

It may be mentioned that for a ‘‘pure’’ boundary condition, i.e. with a ¼ 0, the values l2 always yield the well-
known natural frequencies of that particular boundary condition case are obtained, while for the ‘‘pure’’
boundary condition of the other case, i.e. a ¼ 2p, the values l2 of that particular boundary condition case are
obtained. For mixed boundary condition cases of varying aa0 and aa2p the approximate l2-value is
obtained from the following procedure, and requires for different modes m and n careful selection of the
number of points at which the remaining boundary conditions have to be satisfied to yield acceptable final
results. This point is addressed in the numerical solutions below.

3. Method of solution

Let us first treat those cases requiring only two different boundary conditions for the numerical procedure.
Then two of the four boundary conditions are valid for the entire boundary range for the two mixed
boundaries under consideration. This fact reduces the complexity of the numerical treatment considerably.

There are four basic boundary cases describing such plate oscillations, which we shall treat in the following.

3.1. Clamped along part of the boundary and simply supported along the remainder

If the plate is clamped in the range 0ojoa and simply supported in the range apjp2p, the plate exhibits
for the total range 0pjo2p a vanishing deflection w ¼ 0 at r ¼ a (Fig. 1) and yields therefore for the solution

W ðr;jÞ ¼
X1
m¼0

Jm l
r

a

� �
�

JmðlÞ
ImðlÞ

Im l
r

a

� �� �
fAm cosmjþ Bm sinmjg. (12)
α φ

ra) simply supported   clamped
b) guided  clamped
c) free  simply supported
d) guided  free
e) free  clamped
f) guided   simply supported

φ
rsimply supported  clamped

simply supported
 clamped

Fig. 1. Geometry and boundaries of the plate system.
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Table 1

Eigenvalues lðcÞ2mn for a clamped plate

nnm 0 1 2 3

1 10.2158 21.2604 34.8770 51.0300

2 39.7711 60.8287 84.5826 111.0214

3 89.1041 120.0792 153.8151 190.3038

4 158.1842 199.0534 242.7206 289.1799

Table 2

Eigenvalues lðssÞ2
mn for a simply supported plate (n ¼ 0:3)

nnm 0 1 2 3

1 4.9351 13.8982 25.6133 39.9573

2 29.7200 48.4789 70.1170 94.5490

3 74.1561 102.7733 134.2978 168.6749

4 138.3181 176.8012 218.2026 262.4847
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It satisfies W ða;jÞ ¼ 0 in the total j-region. If a ¼ 2p, i.e. the plate is totally clamped the second boundary
condition qw=qr ¼ 0 at r ¼ a yields

J 0mðlÞ �
JmðlÞ
ImðlÞ

I 0mðlÞ ¼ 0, (13)

which yields the values lðcÞ2mn given in Ref. [6] and Table 1.
If the plate is totally simply supported, the values a ¼ 0 and Eq. (12) has to satisfy in addition the vanishing

bending moment Mr ¼ 0 at the edge r ¼ a. This yields with Eq. (2)

J 00mðlÞ þ
n
l

J 0mðlÞ
h i

ImðlÞ � I 00mðlÞ þ
n
l

I 0mðlÞ
h i

JmðlÞ ¼ 0, (14)

which solution results for n ¼ 0:3 in the eigenvalues lðssÞ2
mn given in Ref. [6] and Table 2.

For a plate of partly clamped boundary in the range 0ojoa and a simply supported boundary in the range
apjp2p we have to satisfy qw=qr ¼ 0 at r ¼ a resulting in

X1
m¼0

J 0mðlÞ �
JmðlÞ
ImðlÞ

I 0mðlÞ
� �

ðAm cosmjþ Bm sinmjÞ ¼ 0 in the range 0ojoa (15)

and Mr ¼ 0 in the range apjp2p resulting in

X1
m¼0

J 00mðlÞ þ
n
l

J 0mðlÞ
h i

�
JmðlÞ
ImðlÞ

I 00mðlÞ þ
n
l

I 0mðlÞ
h i� 	

ðAm cosmjþ Bm sinmjÞ ¼ 0

in the range apjp2p. ð16Þ

Eqs. (15) and (16) have to be satisfied at a chosen number of points in each range. If j ¼ an1=ðN1 þ 1Þ with
n1 ¼ 1; 2; . . . ;N1 in the range 0ojoa and j ¼ aþ ð2p� aÞn2=N2 with n2 ¼ 0; 1; . . . ;N2 in the range
apjp2p, Eqs. (15) and (16) read then (N1 þN2 even)

XðN1þN2Þ=2

m¼0

J 0mðlÞ �
JmðlÞ
ImðlÞ

I 0m lð Þ
� �

Am cos
ma n1

N1 þ 1

� �
þ Bm sin

ma n1

N1 þ 1

� �� 	
¼ 0

for n1 ¼ 1; 2; . . . ;N1 ð17Þ
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and

XðN1þN2Þ=2

m¼0

J 00mðlÞ þ
n
l

J 0mðlÞ
h i

�
JmðlÞ
ImðlÞ

I 00mðlÞ þ
n
l

I 0mðlÞ
h i� 	

� Am cos m aþ
ð2p� aÞn2

N2

� �� �
þ Bm sin m aþ

ð2p� aÞn2

N2

� �� �� 	
¼ 0

for n2 ¼ 0; 1; . . . ;N2. ð18Þ

Eq. (17) represents N1 homogeneous algebraic equations in the unknowns A0; A1; . . . ;AðN1þN2Þ=2

and B1; B2; . . . ;BðN1þN2Þ=2, while Eq. (18) yields N2 þ 1 equations in those constants. The vanishing
coefficient determinant represents the equation for the determination of the lower approximate eigenvalues l.
It yields the lower values lmn for a given magnitude of a in ascending order of which those compatible
for a given mode m have to be selected between those of the clamped case and those of the totally simply
supported case.

3.2. Clamped along part of the boundary and guided along the remainder

If the circular plate is clamped in the range 0ojoa and guided in the remaining boundary range
apjp2p (Fig. 1), the plate exhibits for the total range 0ojp2p a vanishing slope qw=qr ¼ 0 at r ¼ a.
Before we proceed to this case we investigate the limit cases of a totally clamped plate and that of a
totally guided plate. The totally clamped plate exhibits the eigenvalues as presented in Table 1 and Ref. [6].
For a plate totally guided at r ¼ a the eigenvalues are determined from the equation qw=qr ¼ 0 and Vr ¼ 0 at
r ¼ a with the solution of the differential equation (1) as given by Eq. (12). The eigenvalues may then be
determined from

2l3J 0mðlÞ �m2ð1� nÞ JmðlÞ �
J 0mðlÞ
I 0mðlÞ

ImðlÞ
� �

¼ 0 (19)

and yield for n ¼ 0:3 the results given in Table 3, where the root zero (m ¼ 0, n ¼ 1) represents the
translational rigid body motion. This is important to notice, since the counting of the roots has to be
performed in an appropriate way in order to properly identify the mode for the mixed boundary case. For a
partially clamped plate in the range 0ojoa and partially guided plate in the range apjp2p we have to
satisfy at r ¼ a for the deflection

W ðr;jÞ ¼
X1
m¼0

Jm l
r

a

� �
�

J 0mðlÞ
I 0mðlÞ

Im l
r

a

� �� �
fAm cosmjþ Bm sinmjg, (20)

which satisfies the boundary condition qw=qr ¼ 0 at r ¼ a. The boundary condition w ¼ 0 for the clamped
part of the plate, is

X1
m¼0

JmðlÞ �
J 0mðlÞ
I 0mðlÞ

ImðlÞ
� �

ðAm cosmjþ Bm sinmjÞ ¼ 0 (21)
Table 3

Eigenvalues lðgÞ2mn for a guided plate (n ¼ 0:3)

nnm 0 1 2 3

1 0 3.0825 8.7849 16.9020

2 14.6820 28.3988 44.9041 64.1304

3 49.2185 72.8590 99.3610 128.6775

4 103.4995 137.0254 173.4422 212.7161



ARTICLE IN PRESS
H.F. Bauer, W. Eidel / Journal of Sound and Vibration 292 (2006) 742–764748
in the range 0ojoa and the boundary condition V r ¼ 0 for the guided part

X1
m¼0

2l3J 0mðlÞ �m2ð1� nÞ JmðlÞ �
J 0mðlÞ
I 0mðlÞ

ImðlÞ
� �� 	

ðAm cosmjþ Bm sinmjÞ ¼ 0

in the range apjp2p. ð22Þ

Following the same procedure as in Section 3.1 for the points at which these Eqs. (21) and (22) are to be
satisfied yield the eigenvalues l for a given Poisson ratio n ¼ 0:3.
3.3. Simply supported along part of the boundary and free along the remainder

For a circular plate with simply supported boundary in the range 0ojoa and free along the remaining
boundary apjp2p, the common boundary condition of vanishing bending moment Mr ¼ 0 exists at r ¼ a

for the total range 0pjo2p. The remaining partial boundary conditions w ¼ 0 at r ¼ a in the range 0ojoa
and V r ¼ 0 at r ¼ a in the range apjp2p have now to be satisfied approximately by applying the above
proposed method.

Before proceeding to this case of mixed boundary conditions we treat first the limiting cases where a ¼ 0, i.e.
the free plate, and a ¼ 2p, i.e. the totally simply supported plate. The eigenvalues of the latter case were
presented already in Table 2. For a completely free plate the eigenvalues are presented by

fð1� nÞlJ 0mðlÞ þ ½l
2
�m2ð1� nÞ�JmðlÞgfl

3I 0mðlÞ �m2ð1� nÞ½lI 0mðlÞ � ImðlÞ�g

þ fð1� nÞlI 0mðlÞ � ½l
2
þm2ð1� nÞ�ImðlÞgfl

3J 0mðlÞ þm2ð1� nÞ½lJ 0mðlÞ � JmðlÞ�g ¼ 0 ð23Þ

of which lðf Þ2mn is presented for n ¼ 0:3 in Table 4, where the roots zero (m ¼ 0, n ¼ 1 and m ¼ 1, n ¼ 1)
represent the rigid body motions of translation and rotation, respectively. The deflection of the plate satisfying
the boundary condition Mr ¼ 0 at r ¼ a for 0ojp2p yields with

wmðl; nÞ ¼
ð1� nÞlJ 0mðlÞ þ ½l

2
�m2ð1� nÞ�JmðlÞ

ð1� nÞlI 0mðlÞ � ½l
2
þm2ð1� nÞ�ImðlÞ

, (24)

W ðr;jÞ ¼
X1
m¼0

Jm l
r

a

� �
� wmðl; nÞIm l

r

a

� �h i
fAm cosmjþ Bm sinmjg, (25)

which when introduced in the remaining partial boundary condition results in

X1
m¼0

½JmðlÞ � wmðl; nÞImðlÞ�fAm cosmjþ Bm sinmjg ¼ 0

in the range 0ojoa ð26Þ
Table 4

Eigenvalues lðf Þ2mn for a free plate (n ¼ 0:3)

nnm 0 1 2 3

1 0 0 5.3583 12.4390

2 9.0031 20.4746 35.2601 53.0078

3 38.4432 59.8116 84.3662 111.9450

4 87.7502 118.9573 153.3059 190.6918
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and

X1
m¼0

fl3J 0mðlÞ þm2ð1� nÞ½lJ 0mðlÞ � JmðlÞ� þ wmðl; nÞ½l
3I 0mðlÞ

�m2ð1� nÞ½lI 0mðlÞ � ImðlÞ��gfAm cosmjþ Bm sinmjg ¼ 0

in the range apjp2p. ð27Þ

Following the above numerical procedure Eqs. (26) and (27) yield at arbitrary points on the boundary of the
plate the approximate lower natural frequencies for the plate of simply supported-free mixed boundary
conditions.

3.4. Free along part of the boundary and guided along the remainder

If part of the circular plate is free in the range 0ojoa and guided in the range apjp2p, the
Kelvin–Kirchhoff edge reaction Vr ¼ 0 is valid along the total boundary r ¼ a, while a mixed boundary
condition exists and is described as Mr ¼ 0 in the range 0ojoa and qw=qr ¼ 0 in the range apjp2p. Before
proceeding to this mixed boundary condition case, we first investigate the pure cases of a free boundary and
that of a totally guided boundary of the circular plate. For the latter case the results are already presented in
Table 3 for n ¼ 0:3. For a completely free boundary condition the eigenvalues are presented for n ¼ 0:3 in
Table 4.

For the above described mixed boundary conditions the deflection satisfying the condition V r ¼ 0 at r ¼ a

and along the total range 0ojp2p yields with

Fmðl; nÞ ¼
l3J 0mðlÞ þm2ð1� nÞ½lJ 0mðlÞ � JmðlÞ�

l3I 0mðlÞ �m2ð1� nÞ½lI 0mðlÞ � ImðlÞ�
(28)

the expression

W ðr;jÞ ¼
X1
m¼0

Jm l
r

a

� �
þ Fmðl; nÞIm l

r

a

� �h i
fAm cosmjþ Bm sinmjg, (29)

which when introduced into the remaining mixed boundary conditions yields

X1
m¼0

½J 0mðlÞ þ Fmðl; nÞI 0mðlÞ�fAm cosmjþ Bm sinmjg ¼ 0

in the range apjp2p ð30Þ

and

X1
m¼0

fð1� nÞlJ 0mðlÞ þ ½l
2
�m2ð1� nÞ�JmðlÞ þ Fmðl; nÞ½ð1� nÞlI 0mðlÞ

� ½l2 þm2ð1� nÞ�ImðlÞ�gfAm cosmjþ Bm sinmjg ¼ 0

in the range 0ojoa. ð31Þ

With the above proposed numerical procedure we are able to determine the approximate lower natural
frequencies of the circular plate with the above indicated mixed boundaries, if we choose a finite number of
points on the boundary r ¼ a.

3.5. Circular plate with partly clamped and free boundary

In the previous four cases the boundaries were always such that one of the two plate conditions had a
common boundary condition along the total periphery at r ¼ a. In many practical applications, however,
partial boundary conditions may appear, which are all different in the assumed ranges, may it be by accidental
failures or by design purposes. One case of particular interest is therefore the clamped plate for which part of
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the periphery has become loose, i.e. a free boundary, by structural failure. This case, however, is presenting a
more involved numerical evaluation procedure, as shall be performed in the following treatment.

Before treating this mixed boundary case we shall first recall the eigenvalues for a completely clamped plate
and for a completely free plate. In these cases, the eigenvalues lðf Þ2mn are presented for a totally free plate in
Table 4, while for a completely clamped plate the eigenvalues lðcÞ2mn are given in Table 1 and Ref. [6]. It should
be noted that Ref. [6] does not present roots for all boundary value cases presented here.

The solution of the plate satisfying the plate Eq. (1) is given by

W ðr;jÞ ¼
X1
m¼0

AmJm l
r

a

� �
þ BmIm l

r

a

� �h i
cosmj CmJm l

r

a

� �
þDmIm l

r

a

� �h i
sinmj

n o
, ð32Þ

which yields with the boundary conditions in the two ranges the equations

X1
m¼0

f½AmJmðlÞ þ BmImðlÞ� cosmjþ ½CmJmðlÞ þDmImðlÞ� sinmjg ¼ 0

in the range 0ojoa, ð33Þ

X1
m¼0

f½AmlJ 0mðlÞ þ BmlI 0mðlÞ� cosmjþ ½CmlJ 0mðlÞ þDmlI 0mðlÞ� sinmjg ¼ 0

in the range 0ojoa ð34Þ

and

X1
m¼0

f½Amðl
2J 00mðlÞ þ nlJ 0mðlÞ �m2nJmðlÞÞ þ Bmðl

2I 00mðlÞ þ nlI 0mðlÞ

�m2nImðlÞÞ� cosmjþ ½Cmðl
2J 00mðlÞ þ nlJ 0mðlÞ �m2nJmðlÞÞ þDmðl

2I 00mðlÞ

þ nlI 0mðlÞ �m2nImðlÞÞ� sinmjg ¼ 0 in the range apjp2p, ð35Þ

X1
m¼0

f½Amðl
3J 000mðlÞ þ l2J 00mðlÞ � ½m

2ð2� nÞ þ 1�lJ 0mðlÞ þm2ð3� nÞJmðlÞÞ

þ Bmðl
3I 000mðlÞ þ l2I 00mðlÞ � ½m

2ð2� nÞ þ 1�lI 0mðlÞ þm2ð3� nÞImðlÞÞ� cosmj

þ ½Cmðl
3J 000mðlÞ þ l2J 00mðlÞ � ½m

2ð2� nÞ þ 1�lJ 0mðlÞ þm2ð3� nÞJmðlÞÞ

þDmðl
3I 000mðlÞ þ l2I 00mðlÞ � ½m

2ð2� nÞ þ 1�lI 0mðlÞ þm2ð3� nÞImðlÞÞ� sinmjg ¼ 0

in the range apjp2p. ð36Þ

Satisfying these four equations at arbitrary j and truncating the infinite series such that the algebraic system
exhibits as many equations as coefficients Am, Bm, Cm and Dm yields a system of algebraic equations; setting
the coefficient determinant equal to zero leads to an approximate transcendental eigenvalue equation. The
roots of this determinant represent the approximate natural frequencies of the above circular plate with the
given mixed boundary conditions. With j ¼ an1=ðN1 þ 1Þ, n1 ¼ 1; 2; . . . ;N1, j ¼ aþ ð2p� aÞn2=N2, n2 ¼

0; 1; 2; . . . ;N2 Eqs. (33) and (34) yield each N1 algebraic equations, while Eqs. (35) and (36) result each in
ðN2 þ 1Þ algebraic equations. The infinite series has to be truncated with m ¼ 0 to m ¼ ðN1 þN2Þ=2, where
ðN1 þN2Þ must be even, to represent an algebraic system of 2ðN1 þN2 þ 1Þ equations for the unknown
constants A0, A1, A2; . . . ;AðN1þN2Þ=2, B0, B1, B2; . . . ;BðN1þN2Þ=2, C0, C1, C2; . . . ;CðN1þN2Þ=2 and D0,
D1, D2; . . . ;DðN1þN2Þ=2.

It should be also mentioned that a circular plate with more than two mixed boundary conditions at its
periphery r ¼ a may also be treated, if one is willing to solve the appearing larger order determinants
numerically.
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3.6. Circular plate with partly simply supported and guided boundary

Before treating this mixed boundary condition case we shall recall the eigenvalues of the completely simply
supported plate (Table 2) and those of the totally guided plate (Table 3). These indicate the values of l2 on the
ordinate for a ¼ 0 and a ¼ 2p. We detect that for a ¼ 2p, i.e. a completely guided plate, the axisymmetric
mode m ¼ 0, n ¼ 1 starts from the abscissa axis, representing a translational rigid body motion.

The solution of the plate satisfying Eq. (1) is presented by Eq. (32), which yields with the boundary
conditions in the two ranges, Eqs. (33) and (35) in the range 0ojoa, and Eqs. (34) and (36) for the range
apjp2p the equations for the determination of l2. Satisfying these four equations at freely chosen point j
and truncating the infinite series yields a system for the determination of the lower approximate eigenvalues,
i.e. the vanishing coefficient determinant as approximate eigenvalue equation as has been shown above.

3.7. Other boundary value cases

The procedure may well be applied to cases, where the boundary of the plate exhibits more than two mixed
boundary conditions. If the boundary of the plate shows three different boundary conditions, say clamped in
the range 0pjpa, simply supported in the range aojpb, (aobo2p), and free in the remaining angular
range bojo2p, then we have to satisfy in the first range the boundary conditions (9a), in the second range
(9b) and in the third range those given by Eqs. (9c). The involved numerical procedure, however, may be—in
spite of coinciding equal boundary conditions—quite cumbersome and requires the solution of a large number
of equations, i.e. a high order determinant for the determination of the natural frequencies.

The solution of the plate satisfying the plate equation (1) is given by Eq. (32). Satisfying in the range
0pjoa yields for w ¼ 0 and qw=qr ¼ 0 the equations

X1
m¼0

½AmJmðlÞ þ BmImðlÞ� cos m
ja
N1

� �
þ ½CmJmðlÞ þDmImðlÞ� sin m

ja
N1

� �� 	
¼ 0, (37)

where j ¼ 0; 1; . . . ; ðN1 � 1Þ and 0pjjoaj=N1. These are N1 algebraic and homogeneous equations. In
addition we obtain

X1
m¼0

½AmJ 0mðlÞ þ BmI 0mðlÞ�l cos m
ja
N1

� �
þ ½CmJ 0mðlÞ þDmI 0mðlÞ�l sin m

ja
N1

� �� 	
¼ 0 (38)

i.e. N1 algebraic equations.
For the range apjob the plate exhibits the simply supported boundary conditions w ¼ 0 and Mr ¼ 0 at

r ¼ a. This yields with k ¼ 0; 1; 2; . . . ; ðN2 � 1Þ and aojkob two additional systems of algebraic equations,
totalling 2N2 equations. They are

X1
m¼0

½AmJmðlÞ þ BmImðlÞ� cos m aþ
ðb� aÞk

N2

� �� ��

þ ½CmJmðlÞ þDmImðlÞ� sin m aþ
ðb� aÞk

N2

� �� �	
¼ 0, ð39Þ

and

X1
m¼0

½Amðl
2J 00mðlÞ þ nlJ 0mðlÞ �m2nJmðlÞÞ




þ Bmðl
2I 00mðlÞ þ nlI 0mðlÞ �m2nImðlÞÞ� cos m aþ

ðb� aÞk
N2

� �� �
þ ½Cmðl

2J 00mðlÞ þ nlJ 0mðlÞ �m2nJmðlÞÞ

þ Dmðl
2I 00mðlÞ þ nlI 0mðlÞ �m2nImðlÞÞ� sin m aþ

ðb� aÞk
N2

� �� �	
¼ 0. ð40Þ
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For the remaining boundary condition range bpjlo2p the plate behaves like a guided plate, which is
described by the boundary condition qw=qr ¼ 0 and Vr ¼ 0 at r ¼ a. This results with l ¼ 0; 1; 2; . . . ; ðN3 � 1Þ
and jl ¼ bþ ðð2p� bÞlÞ=N3 in 2N3 algebraic equations. They are given by

X1
m¼0

½AmJ 0mðlÞ þ BmI 0mðlÞ�l cos m aþ
ðb� aÞl

N3

� �� ��

þ ½CmJ 0mðlÞ þDmI 0mðlÞ�l sin m aþ
ðb� aÞl

N3

� �� �	
¼ 0, ð41Þ

and

X1
m¼0

½AmOm þ BmCm� cos m aþ
ðb� aÞl

N3

� �� �
þ ½CmOm þDmCm� sin m aþ

ðb� aÞl
N3

� �� �� 	
¼ 0, ð42Þ

where Om represents the expression in the first round parenthesis, Cm that in the second round parenthesis
of Eq. (36).

If the mixed boundary conditions contain an elastically supported boundary, then we have to apply the
conditions given in Eqs. (9e) for that particular range. For an elastic plate with a clamped boundary in
the range 0pjpa and an elastically supported boundary in the remaining range aojo2p, we have to satisfy
the boundary condition w ¼ qw=qr ¼ 0 in the range 0pjpa and Mr � K qw=qr ¼ 0 and Vr þ kw ¼ 0 at
r ¼ a and in the range aojo2p. This would in comparison with Section 3.1 require the solution of the
slightly different algebraic system of equations, which contains in Eqs. (35) and (36) additional terms
�K qw=qr and kw, respectively.

Other cases of two mixed interchanging boundary conditions may also be treated. As an example we
consider a mixed boundary condition case being (Fig. 1)

clamped: w ¼ 0 and
qw

qr
¼ 0 at r ¼ a in the ranges

0pjp
p
2

ppjp
3p
2

8><
>:

9>=
>; (43)

and

simply supported: w ¼ 0 and Mr ¼ 0 at r ¼ a in the ranges

p
2
ojop

3p
2
ojo2p

8><
>:

9>=
>;. (44)

Over the complete boundary we observe w ¼ 0 at r ¼ a which renders the solution (12), while the boundary
condition qw=qr ¼ 0 at r ¼ a are in the ranges given by Eq. (43) yields with j ¼ pn1=2ðN1 þ 1Þ, n1 ¼

1; 2; . . . ;N1 and j ¼ pþ pn2=2N2, n2 ¼ 1; 2; . . . ;N2 the expressions

XðN1þN2þN3þN4Þ=2

m¼0

J 0mðlÞ �
JmðlÞ
ImðlÞ

I 0mðlÞ
� �

Am cos
mp n1

2N1

� �
þ Bm sin

mp n1

2N1

� �� 	
¼ 0

for n1 ¼ 1; 2; . . . ;N1 ð45Þ

representing N1 equations, and

XðN1þN2þN3þN4Þ=2

m¼0

J 0mðlÞ �
JmðlÞ
ImðlÞ

I 0mðlÞ
� �

Am cosm pþ
p n2

2N2

� �
þ Bm sinm

p n2

2N2

� �� 	
¼ 0

for n2 ¼ 1; 2; . . . ;N2 ð46Þ

representing N2 equations, respectively. The simply supported parts of the boundary (see Eq. (44)), as
obtained from Eq. (16) are then given by (j ¼ p=2þ pn3=2N3; n3 ¼ 0; 1; 2; . . . ;N3; j ¼ 3p=2þ pn4=2N4,
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n4 ¼ 1; 2; . . . ;N4)

XðN1þN2Þ=2

m¼0

J 00mðlÞ þ
n
l

J 0mðlÞ
h i

�
JmðlÞ
ImðlÞ

I 00mðlÞ þ
n
l

I 0mðlÞ
h i� 	

� Am cos m
p
2
þ

pn3

2N3

� �� �
þ Bm sin m

p
2
þ

pn3

2N3

� �� �� 	
¼ 0

for n3 ¼ 0; 1; . . . ;N3 ð47Þ

representing N3 þ 1 equations, and

XðN1þN2Þ=2

m¼0

J 00mðlÞ þ
n
l

J 0mðlÞ
h i

�
JmðlÞ
ImðlÞ

I 00mðlÞ þ
n
l

I 0mðlÞ
h i� 	

� Am cos m
3p
2
þ

pn4

2N4

� �� �
þ Bm sin m

3p
2
þ

pn4

2N4

� �� �� 	
¼ 0

for n4 ¼ 1; . . . ;N4 ð48Þ

representing N4 equations. The above Eqs. (45)–(48) represent a homogeneous algebraic system of ðN1 þ

N2 þN3 þN4 þ 1Þ equations in the unknowns A0, A1; . . . ;AðN1þN2þN3þN4Þ=2, B1, B2; . . . ;BðN1þN2þN3þN4Þ=2. We
just have to observe that ðN1 þN2 þN3 þN4Þ is an even number.

4. Numerical evaluations and conclusions

Some of the above obtained results have been evaluated numerically for the lower modes of a circular plate.
The natural frequencies l2mn ¼ omna2

ffiffiffiffiffiffiffiffiffiffiffi
Rh=D

p
are presented for the mixed boundary condition of a ‘‘simply

supported–clamped’’ plate as a function of the angle a=p and n ¼ 0:3 in Fig. 2. They may also be found
together with the nodal lines for the asymmetric case ðma0Þ in Ref. [5]. For a ¼ 0 we deal with a plate of a
purely simply supported boundary condition, while for a ¼ 2p the boundary is in a purely clamped state.
These values are indicated for n ¼ 0:3 in the figure as � for the simply supported boundary and as � for the
clamped boundary. The influence of the Poisson ratio n, which appears only in the simply supported boundary
is indicated by the �-star sign, where the upper star represents the l2-values for n ¼ 0:5 and the lower one that
of n ¼ 0:2. The natural frequency for m ¼ 0, n ¼ 1 increases from 4.9351 to 10.2158 and exhibits a slight
curvature close to a ¼ p, i.e. the case where one half of the plate is simply supported and the other half is
clamped. The numerical results were compared with those of Refs. [3,4], where only the mode m ¼ 0, n ¼ 1 has
been treated and presented. The values presented above show close results to those given in Ref. [3]. In the
numerical evaluation of our treatment we employed N1 þN2 ¼ 150, and vary N1 and N2 according to the
magnitude of a, which means a varying ratio of N2=N1 ¼ r, which decreases as the number of points N2

considered simply supported decreases and the number of points N1 considered clamped increases. The
magnitudes of N1 and N2 are chosen such that an increase does not affect the accuracy of the plotted l2-values
(o). If a is small the portion of the boundary being clamped is small and needs only a small number N1, while
that of the large boundary region being simply supported requires a large number N2 (adding up to
N1 þN2 ¼ 150) for the numerical procedure. As the clamped portion increases so does N1, while N2

decreases. Our treatment of the problem includes also the not yet treated axisymmetric second mode m ¼ 0,
n ¼ 2, starting for a totally simply supported plate from ðlðssÞ

02 Þ
2
¼ 29:72 and reaches for a completely clamped

plate the value ðlðcÞ02 Þ
2
¼ 39:77 (see also Tables 1 and 2). We notice increased varying curvature for aa0 and

aa2p. The results for asymmetric modes ma0 exhibit for the first modal number, i.e. m ¼ n ¼ 1 two values
l211 and l0211 for aa0 and aa2p. In the pure boundary condition case we observe the magnitudes ðlðssÞ

11 Þ
2
¼

13:8982 and ðlðcÞ11 Þ
2
¼ 21:26. Such asymmetric cases have not yet been treated previously. In the mixed

boundary condition case the modal part 1 exhibits in the range 0oaop eigenfrequencies o11 being smaller
than those of the branch 2 , while for a4p, i.e. the case, where more than half of the plate is clamped at its
boundary, the eigenfrequency o11 of the modal part 1 is larger than that of the branch 2 . These two
branches caused by the mixing of boundaries shall also exhibit different nodal lines (see Ref. [5] for details).
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The mode m ¼ 2, n ¼ 1 which starts for a completely simply supported plate at ðlðssÞ
21 Þ

2
¼ 25:61 and reaches for

a totally clamped plate the magnitude ðlðcÞ21 Þ
2
¼ 34:877, exhibits also two branches 1 and 2 for aa0; 2p with

increased fluctuations and flexions (see Fig. 2).
The following mixed boundary condition cases have not been treated previously and reveal interesting

vibrational behavior as a function of the magnitude of the angle a. For a plate for which part of the boundary
condition at r ¼ a is described as clamped and the remainder of it is guided, some results are presented in
Fig. 3. We notice that the axisymmetric mode m ¼ 0, n ¼ 1 exhibits for the square of the eigenvalue a range
from ðlðgÞ01 Þ

2
� 1:45 to ðlðcÞ01 Þ

2
¼ 10:2158. It should be noted that the square of the eigenvalue for the mode

m ¼ 0, n ¼ 1 does not approach the square of the eigenvalue ðlðgÞ01 Þ
2
¼ 0 of the totally guided plate when

a! 0, because the limit case for a! 0 is not a totally guided plate, but a plate guided all over the boundary
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with exception at point ðr;jÞ ¼ ða; 0Þ, where the boundary of the plate is fixed. The course of the magnitude of
the mixed case results in natural frequencies between o01 ¼ 1:45=a2

ffiffiffiffiffiffiffiffiffiffiffi
Rh=D

p
and o01 ¼ 10:2158=a2

ffiffiffiffiffiffiffiffiffiffiffi
Rh=D

p
. For

the next axisymmetric mode m ¼ 0, n ¼ 2 the magnitudes l2 fluctuate between ðlðgÞ02 Þ
2
� 15:2 and ðlðcÞ02 Þ

2
¼

39:77 and exhibits increased flexion. Again for a! 0 the square of the eigenvalue does not approach that of
the totally guided plate, but to a value that is about 3.5% higher. The asymmetric mode m ¼ n ¼ 1 again
shows for the mixed boundary conditions two branches 1 and 2 which intersect and show some flexion with
increasing a. Both branches approach for a! 2p to the limit case of totally clamped plate, i.e. the square of
the eigenvalue ðlðcÞ11 Þ

2
¼ 21:26. When a! 0 only one branch approaches to ðlðgÞ11 Þ

2
¼ 3:08. This branch

corresponds obviously to the sinj-solution, while the other one corresponding to the cosj-solution has a
limit value of about 6.0 for the square of the eigenvalue, which is twice as large as the first one. Similar to this
are the results for the mode m ¼ 2, n ¼ 1. The eigenvalues for the mixed boundary condition case ‘‘simply
supported–free’’ are exhibited in Fig. 4 for ðm; nÞ ¼ ð0; 1Þ, (0, 2), (1,1) and (2,1). Since the plate with a totally
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free boundary is capable to perform rigid body motion in translation as well as in rotation, the curve
belonging to the mode m ¼ 0, n ¼ 1 starts from l2 ¼ 0. Otherwise, the results show similar effects as in the
previous cases, i.e. increased flexion and curvature with increased mode number m and for asymmetric modes
two frequency ranges 1 and 2 .

For the mixed boundary condition case free–guided the eigenvalues are presented in Fig. 5. The
axisymmetric mode m ¼ 0, n ¼ 1 is presented by the abscissa axis, exhibiting the rigid body motion in
translation, indicating that the axisymmetric mode m ¼ 0, n ¼ 1 is nothing but an up and down translatory
motion of the rigid plate. It is independent of the magnitude of a, while the mode m ¼ n ¼ 1 shows for a ¼ 2p,
i.e. a completely free boundary for rotational rigid body motion. This means that a rotational rigid body
motion of the totally free plate is representing at a ¼ 2p the asymmetric mode m ¼ 1, n ¼ 1. For aa2p we
detect again two branches of eigenvalues. Again we obtain for axisymmetric modes with m ¼ 0 one eigenvalue
for all a-values, as may be seen for m ¼ 0 and n ¼ 1; 2 in Fig. 5. For the mode m ¼ 2, n ¼ 1 the eigenvalues
exhibit again two branches of different flexions, curvatures and fluctuations as a increases.
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The mixed boundary conditions clamped–free requires for the determination of the approximate squares of
the eigenvalues l2 the solution of a set of algebraic equations stemming from Eqs. (33)–(36), where the set of
Eqs. (33) and (34) have to be satisfied in the clamped boundary range 0ojoa, while the set of Eqs. (35) and
(36) satisfy a finite number of free boundary values in the range apjp2p. The results are given for
ðm; nÞ ¼ ð0; 1Þ, ðm; nÞ ¼ ð0; 2Þ and m ¼ n ¼ 1 in Fig. 6 for n ¼ 0:3. The axisymmetric mode m ¼ 0, n ¼ 1
exhibits as the asymmetric mode m ¼ n ¼ 1 for a ¼ 0, i.e. a totally free plate, the magnitude l2 ¼ 0 as
mentioned above. As a increases to a ¼ 2p the axisymmetric mode exhibits increasing l2 and reaches finally at
a ¼ 2p a magnitude of l2 ¼ 10:2158. It may be noticed that the magnitude of l2 increases more rapidly above
a region in which more than half of the plate exhibits a clamped boundary. For the asymmetric mode
m ¼ n ¼ 1 the two branches of l2 cross each other again shortly above a ¼ p and exhibit similar behavior as in
the above cases. For the axisymmetric mode m ¼ 0, n ¼ 2 the course of l2 may be seen in Fig. 6, originating
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for a ¼ 0 at l2 � 10:5 and reaches with varying curvature the value of a completely clamped plate (a ¼ 2p), i.e.
the magnitude l2 ¼ 39:77.

The results l2 for the mixed boundary conditions simply supported–guided are presented in Fig. 7. The
values for a completely simply supported plate and a completely guided plate are presented as

N
and �

marks at a ¼ 2p or a ¼ 0, respectively (see also Tables 2 and 3). Again we notice that the axisymmetric modes
m ¼ 0 (n ¼ 1, 2) are represented by one frequency each, which exhibits with increasing n stronger variations as
a increases. The asymmetric oscillation frequencies ma0, i.e. m ¼ 1 and m ¼ 2, show again two branches 1
and 2 , as indicated in Fig. 7. If the plate is totally guided the mode m ¼ 0, n ¼ 1 is only capable to perform a
rigid body translation, as indicated by the o-mark at l2 ¼ 0, in spite of the fact that our analysis, which is only
valid till shortly before a! 0 represents a finite value (same reason as explained above). The same is true for
the other modes ma0. It may be noticed in contrast to all other cases above that for poao2p the value of l2

assumes values larger than those of the pure simply supported plate
N

.
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The proposed and executed method of satisfying the mixed boundary regions at appropriately chosen points
on the boundary r ¼ a of the plate—at various angular locations—i.e. points on r ¼ a at j ¼ a, raises of
course the question of convergence and accuracy of the approximate natural frequencies of the here treated
lower vibration modes for mixed boundary condition cases. How close or distant should the points at which
the boundary conditions are satisfied be chosen in order to obtain an acceptable engineering value for the
natural frequencies? To answer this question and obtain some engineering confidence in the above method we
have determined the square of the eigenvalues l, i.e. l2	o, for various arrangements of the chosen points N1

and N2 where N1 and N2 have been chosen in proportionality to the magnitude of the a-values. Table 5a
exhibits for a ¼ p=2 and for the clamped–simply supported mixed boundary case the results for l2 with
varying ðN1 þN2Þ magnitude from N1 þN2 ¼ 50 to 340 in steps of 10. The value N1 þN2 ¼ 150, used in our
numerical evaluations throughout has been bold typed. It may be noticed that the increase from N1 þN2 ¼

150 to N1 þN2 ¼ 340 resulted only in a change of l2 of about 1
4
%, which is less than the thickness of the curve

m ¼ 0, n ¼ 1 in Fig. 2. Even in the case of N1 þN2 ¼ 150 the error appearing in the axisymmetric natural
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Table 5a

Eigenvalues l2 for various modes ðm; nÞ: boundary conditions clamped–simply supported

N1 þN2 N1 N2 a ¼ p=2 p 3p=2

(0,1) (0,2) (1,1) 1 (1,1) 2 (2,1) 1 (2,1) 2 (0,1) (0,1)

50 37 13 6.314 32.903 14.604 16.765 27.723 27.142 7.430 8.984

60 44 16 6.323 32.923 14.630 16.789 27.784 27.144 7.445 9.002

70 52 18 6.332 32.944 14.654 16.811 27.839 27.146 7.456 9.017

80 59 21 6.338 32.956 14.668 16.824 27.872 27.147 7.465 9.028

90 67 23 6.344 32.968 14.682 16.837 27.905 27.149 7.472 9.038

100 74 26 6.347 32.976 14.691 16.845 27.925 27.150 7.478 9.045

110 82 28 6.351 32.985 14.700 16.853 27.947 27.151 7.483 9.051

120 89 31 6.354 32.990 14.706 16.859 27.961 27.152 7.487 9.056

130 97 33 6.357 32.996 14.713 16.865 27.977 27.153 7.490 9.061

140 104 36 6.358 33.000 14.718 16.869 27.987 27.154 7.493 9.064

150 112 38 6.361 33.005 14.723 16.873 27.998 27.155 7.496 9.068

160 119 41 6.362 33.008 14.726 16.876 28.006 27.156 7.498 9.071

170 127 43 6.364 33.012 14.730 16.880 28.015 27.156 7.500 9.074

180 134 46 6.365 33.014 14.733 16.882 28.021 27.157 7.502 9.076

190 142 48 6.367 33.017 14.736 16.885 28.028 27.157 7.504 9.078

200 149 51 6.368 33.019 14.738 16.887 28.034 27.158 7.505 9.080

210 157 53 6.369 33.022 14.741 16.889 28.039 27.158 7.507 9.082

220 164 56 6.370 33.024 14.743 16.890 28.043 27.159 7.508 9.083

230 172 58 6.371 33.026 14.745 16.892 28.048 27.159 7.509 9.085

240 179 61 6.371 33.027 14.746 16.894 28.052 27.159 7.510 9.086

250 187 63 6.372 33.029 14.748 16.895 28.056 27.160 7.511 9.088

260 194 66 6.373 33.030 14.749 16.896 28.059 27.160 7.512 9.089

270 202 68 6.373 33.032 14.751 16.898 28.062 27.160 7.513 9.090

280 209 71 6.374 33.033 14.752 16.899 28.065 27.160 7.514 9.091

290 217 73 6.374 33.034 14.753 16.900 28.068 27.161 7.515 9.092

300 224 76 6.375 33.035 14.754 16.900 28.070 27.161 7.515 9.093

310 232 78 6.375 33.036 14.755 16.901 28.073 27.161 7.516 9.094

320 239 81 6.376 33.037 14.756 16.902 28.074 27.161 7.517 9.094

330 247 83 6.376 33.038 14.757 16.903 28.077 27.162 7.517 9.095

340 254 86 6.377 33.039 14.758 16.904 28.079 27.162 7.518 9.096

Table 5b

Eigenvalues l2 for various modes ðm; nÞ: boundary conditions clamped–guided

N1 þN2 N1 N2 a ¼ p=2

(0,1) (0,2) (1,1) 1 (1,1) 2 (2,1) 1 (2,1) 2

50 12 38 1.898 19.455 4.853 8.366 13.309 13.406

60 14 46 1.918 19.666 4.910 8.454 13.309 13.565

70 17 53 1.936 19.861 4.959 8.535 13.310 13.704

80 19 61 1.947 19.984 4.990 8.586 13.310 13.791

90 22 68 1.958 20.101 5.021 8.634 13.310 13.876

100 24 76 1.965 20.179 5.041 8.666 13.311 13.933

110 27 83 1.972 20.259 5.061 8.699 13.311 13.990

120 29 91 1.977 20.314 5.075 8.721 13.312 14.029

130 32 98 1.982 20.371 5.089 8.745 13.312 14.070

140 34 106 1.986 20.411 5.099 8.761 13.312 14.099

150 37 113 1.990 20.454 5.110 8.778 13.313 14.129

160 39 121 1.993 20.485 5.118 8.791 13.313 14.151

170 42 128 1.996 20.518 5.127 8.805 13.313 14.175
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Table 5b (continued )

N1 þN2 N1 N2 a ¼ p=2

(0,1) (0,2) (1,1) 1 (1,1) 2 (2,1) 1 (2,1) 2

180 44 136 1.998 20.543 5.133 8.814 13.314 14.193

190 47 143 2.000 20.570 5.139 8.825 13.314 14.212

200 49 151 2.002 20.590 5.144 8.833 13.314 14.226

210 52 158 2.004 20.611 5.150 8.842 13.314 14.242

220 54 166 2.006 20.628 5.154 8.849 13.314 14.253

230 57 173 2.007 20.646 5.159 8.856 13.315 14.266

240 59 181 2.009 20.660 5.162 8.862 13.315 14.276

250 62 188 2.010 20.676 5.166 8.868 13.315 14.287

260 64 196 2.011 20.687 5.169 8.873 13.315 14.296

270 67 203 2.012 20.701 5.173 8.878 13.315 14.305

280 69 211 2.013 20.711 5.175 8.882 13.315 14.312

290 72 218 2.014 20.723 5.178 8.887 13.315 14.321

Table 5c

Eigenvalues l2 for various modes ðm; nÞ: boundary conditions supported–free

N1 þN2 N1 N2 a ¼ p=2

(0,1) (0,2) (1,1) 1 (1,1) 2 (2,1) 1 (2,1) 2

50 12 38 0.571 15.803 2.801 5.428 10.450 8.132

60 14 46 0.572 15.802 2.803 5.429 10.452 8.133

70 17 53 0.574 15.815 2.812 5.434 10.472 8.137

80 19 61 0.575 15.815 2.813 5.435 10.473 8.138

90 22 68 0.577 15.827 2.816 5.439 10.481 8.140

100 24 76 0.577 15.828 2.816 5.439 10.482 8.140

110 27 83 0.578 15.833 2.819 5.442 10.489 8.142

120 29 91 0.578 15.833 2.820 5.442 10.489 8.142

130 32 98 0.578 15.839 2.821 5.444 10.493 8.143

140 34 106 0.578 15.839 2.821 5.444 10.493 8.143

150 37 113 0.579 15.842 2.823 5.445 10.497 8.144

160 39 121 0.579 15.842 2.823 5.445 10.497 8.144

170 42 128 0.579 15.845 2.824 5.446 10.499 8.144

180 44 136 0.579 15.845 2.824 5.446 10.499 8.144

190 47 143 0.579 15.847 2.824 5.447 10.501 8.145

200 49 151 0.580 15.847 2.825 5.447 10.502 8.145

210 52 158 0.580 15.849 2.825 5.448 10.503 8.145

220 54 166 0.580 15.849 2.825 5.448 10.503 8.145

230 57 173 0.580 15.850 2.826 5.448 10.505 8.145

240 59 181 0.580 15.850 2.826 5.448 10.505 8.146

250 62 188 0.580 15.852 2.826 5.449 10.506 8.146

260 64 196 0.580 15.852 2.826 5.449 10.506 8.146

270 67 203 0.580 15.853 2.827 5.449 10.507 8.146

280 69 211 0.580 15.853 2.827 5.449 10.507 8.146
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frequency is less than 0.1%. Therefore, the accuracy of the natural frequency is definitely sufficient for
engineering purposes. In the presented Tables 5(a)–(f)we notice the magnitude changes for l2 (proportional to
the natural frequency o) as small for all the numerical cases treated here. Table 5a exhibits such facts also for
m ¼ 0, n ¼ 1 at a ¼ p, meaning half of the plate is clamped and the other half simply supported, as well as for



ARTICLE IN PRESS

Table 5d

Eigenvalues l2 for various modes ðm; nÞ: boundary conditions free–guided

N1 þN2 N1 N2 a ¼ p=2

(0,2) (1,1) 1 (1,1) 2 (2,1) 1 (2,1) 2

50 12 38 9.270 2.836 2.954 8.456 7.965

60 14 46 9.276 2.837 2.961 8.459 7.998

70 17 53 9.282 2.837 2.967 8.461 8.027

80 19 61 9.285 2.837 2.971 8.462 8.045

90 22 68 9.289 2.838 2.974 8.464 8.060

100 24 76 9.291 2.838 2.977 8.465 8.071

110 27 83 9.293 2.838 2.979 8.465 8.082

120 29 91 9.295 2.838 2.980 8.466 8.089

130 32 98 9.296 2.838 2.982 8.466 8.096

140 34 106 9.297 2.838 2.983 8.467 8.101

150 37 113 9.298 2.839 2.984 8.467 8.107

160 39 121 9.299 2.839 2.985 8.467 8.111

170 42 128 9.300 2.839 2.986 8.468 8.115

180 44 136 9.301 2.839 2.986 8.468 8.118

190 47 143 9.301 2.839 2.987 8.468 8.121

200 49 151 9.302 2.839 2.987 8.468 8.124

210 52 158 9.302 2.839 2.988 8.468 8.126

220 54 166 9.303 2.839 2.988 8.468 8.129

230 57 173 9.303 2.839 2.989 8.469 8.131

240 59 181 9.304 2.839 2.989 8.469 8.133

250 62 188 9.304 2.839 2.989 8.469 8.134

260 64 196 9.304 2.839 2.990 8.469 8.136

270 67 203 9.305 2.839 2.990 8.469 8.137

280 69 211 9.305 2.839 2.990 8.469 8.139

290 72 218 9.305 2.839 2.990 8.469 8.140

300 74 226 9.305 2.839 2.991 8.469 8.141

310 77 233 9.306 2.839 2.991 8.469 8.142

Table 5e

Eigenvalues l2 for various modes ðm; nÞ: boundary conditions clamped–free

N1 þN2 N1 N2 a ¼ p=2

(0,1) (0,2) (1,1) 1 (1,1) 2 (2,1) 1 (2,1) 2

50 12 38 1.175 16.946 3.153 6.530 11.211 9.343

60 14 46 1.169 16.927 3.144 6.514 11.195 9.342

70 17 53 1.165 16.926 3.140 6.506 11.194 9.344

80 19 61 1.162 16.912 3.134 6.496 11.183 9.344

90 22 68 1.160 16.911 3.131 6.490 11.177 9.346

100 24 76 1.157 16.900 3.127 6.483 11.169 9.346

110 27 83 1.156 16.896 3.124 6.478 11.165 9.347

120 29 91 1.154 16.887 3.121 6.473 11.158 9.347

130 32 98 1.153 16.884 3.119 6.469 11.154 9.348

140 34 106 1.152 16.877 3.116 6.465 11.148 9.348

150 37 113 1.151 16.874 3.115 6.462 11.145 9.348

160 39 121 1.150 16.868 3.113 6.459 11.141 9.348

170 42 128 1.150 16.865 3.111 6.457 11.138 9.349

180 44 136 1.149 16.860 3.110 6.454 11.134 9.349

190 47 143 1.149 16.857 3.109 6.452 11.132 9.349

200 49 151 1.148 16.854 3.107 6.450 11.129 9.349
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Table 5e (continued )

N1 þN2 N1 N2 a ¼ p=2

(0,1) (0,2) (1,1) 1 (1,1) 2 (2,1) 1 (2,1) 2

210 52 158 1.148 16.851 3.106 6.448 11.127 9.350

220 54 166 1.147 16.848 3.105 6.446 11.124 9.350

230 57 173 1.147 16.845 3.104 6.445 11.122 9.350

240 59 181 1.147 16.842 3.103 6.443 11.120 9.350

250 62 188 1.146 16.840 3.103 6.442 11.118 9.350

260 64 196 1.146 16.838 3.102 6.441 11.116 9.350

270 67 203 1.146 16.836 3.101 6.439 11.115 9.350

280 69 211 1.146 16.834 3.100 6.438 11.113 9.350

290 72 218 1.145 16.832 3.100 6.437 11.112 9.351

300 74 226 1.145 16.830 3.099 6.436 11.110 9.351

Table 5f

Eigenvalues l2 for various modes ðm; nÞ: boundary conditions simply supported–guided

N1 þN2 N1 N2 a ¼ p=2

(0,1) (0,2) (1,1) 1 (1,1) 2 (2,1) 1 (2,1) 2

50 12 38 1.748 19.686 4.934 7.884 13.637 11.917

60 14 46 1.777 19.761 4.965 7.958 13.707 11.923

70 17 53 1.807 19.860 5.013 8.042 13.823 11.929

80 19 61 1.824 19.915 5.032 8.090 13.872 11.933

90 22 68 1.845 20.000 5.056 8.156 13.933 11.937

100 24 76 1.856 20.043 5.069 8.190 13.967 11.940

110 27 83 1.868 20.095 5.088 8.229 14.018 11.943

120 29 91 1.876 20.126 5.097 8.253 14.045 11.945

130 32 98 1.885 20.172 5.109 8.286 14.077 11.947

140 34 106 1.891 20.198 5.116 8.305 14.097 11.948

150 37 113 1.897 20.229 5.126 8.327 14.126 11.950

160 39 121 1.901 20.249 5.132 8.342 14.142 11.951

170 42 128 1.907 20.278 5.139 8.362 14.162 11.953

180 44 136 1.910 20.295 5.144 8.374 14.175 11.954

190 47 143 1.914 20.315 5.150 8.388 14.193 11.955

200 49 151 1.917 20.329 5.154 8.398 14.204 11.956

210 52 158 1.920 20.348 5.158 8.411 14.217 11.956

220 54 166 1.923 20.361 5.161 8.419 14.226 11.957

230 57 173 1.925 20.375 5.165 8.429 14.239 11.958

240 59 181 1.927 20.386 5.168 8.436 14.246 11.959

250 62 188 1.930 20.399 5.171 8.445 14.256 11.959

260 64 196 1.931 20.408 5.174 8.452 14.263 11.960

270 67 203 1.933 20.419 5.177 8.459 14.272 11.960

280 69 211 1.934 20.427 5.179 8.464 14.278 11.961

290 72 218 1.936 20.438 5.181 8.471 14.285 11.961

300 74 226 1.937 20.445 5.183 8.476 14.290 11.962
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a ¼ 3p=2. For a ¼ p the axisymmetric natural frequency m ¼ 0, n ¼ 1 exhibits for N1 þN2 ¼ 340 only an
increase of 0.29%, while for a ¼ 3p=2 it is 0.3%. For the higher modes we have restricted the investigation to
the case a ¼ p=2 and found for

clamped–simply supported: m ¼ 0, n ¼ 2: 0.12%, m ¼ 1, n ¼ 1 1 : 0.25%, m ¼ 1, n ¼ 1 2 : 0.19%, m ¼ 2,
n ¼ 1 1 : 0.28%, m ¼ 2, n ¼ 1 2 : 0.03%
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clamped–guided: m ¼ 0, n ¼ 1: 1.24%, m ¼ 0, n ¼ 2: 1.50%; m ¼ 1, n ¼ 1 1 : 1.50% m ¼ 1, n ¼ 1 2 :
1.45%, m ¼ 2, n ¼ 1 1 : 0.03%, m ¼ 2, n ¼ 1 1 : 1.54%
simply supported–free: m ¼ 0, n ¼ 1: 0.25%, m ¼ 0, n ¼ 2: 0.09%, m ¼ 1, n ¼ 1 1 : 0.15%, m ¼ 1, n ¼ 1

2 : 0.01%, m ¼ 2, n ¼ 1 1 : 0.03%, m ¼ 2, n ¼ 1 2 : 0.12%
free–guided: m ¼ 0, n ¼ 2: 0.25%, m ¼ 1, n ¼ 1 1 : 0.03%, m ¼ 1, n ¼ 1 2 : 0.23% m ¼ 2, n ¼ 1 1 :
0.03%, m ¼ 2, n ¼ 1 2 : 0.4%.

It may be mentioned that we have only looked at the convergence behavior of the method to the natural
frequencies at a ¼ p=2, where we noticed acceptable results. For other a-values acceptable natural frequencies
may need more or less points to satisfy our needs. We stopped adding additional points when an engineering
acceptable result was reached. In Table 5a we also showed for this particular mixed boundary condition results
for a ¼ p and a ¼ 3p=2, which exhibited acceptable and very small deviations. Increasing the number N1 þN2

to even larger values, thus increasing the set of algebraic equations to a very high number, resulted in small
oscillatory variations, indicating numerical instabilities.

We may conclude from these results that the increasing of the points at which the boundary conditions are
satisfied does not require a large and numerically involved number N1 þN2 and that the results obtained with
N1 þN2 ¼ 150 warranty an acceptable convergence and the expected engineering accuracy for the natural
frequencies.

It should be mentioned that the values of the pure boundary cases should go to the indicated points in spite
of the fact that the proposed method is not capable to detach the plate completely at these locations, i.e. the
plate is always connected with one point there. This would mean that the natural frequency would run for
physical reasons (- - -) into these points of pure boundary conditions.
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